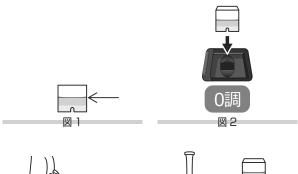
Cr⁶⁺ 6 価クロム


発 色:無色→淡赤→赤→赤紫

測定原理: ジフェニルカルバジド法 測定範囲: 0.05 ~ 1.50 mg/L (ppm) 試 薬: WAK-Cr⁶⁺ チューブ 測定時間: チューブに吸い込み後2分 セ ル:専用カップ

使用波長: 542 nm, 580 nm, 670 nm

測定方法

- 1.【Cr⁶⁺】を押します。
- 2.【決定】を押し、測定画面に切替えます。
- 3. 検水を、専用カップに1.5mL(線まで)採ります。(図1)
- 4. 専用カップをセルボックスに入れ、【O調】を押します。(図2)
- 5.パックテストのチューブに、専用カップの検水を全量吸い込み、同時に【測定】を押します。(図3)
- 6.5.のチューブを軽く5~6回振り混ぜて、すぐに専用カップにチューブ内の測定液を静かに戻し、セルボックスに再びセットし静置します。(図4)
- 7. 経過2分後に濃度が自動表示されます。

注意

- 1. この方法では、検水中の6価クロム (Cr^{G+}) が測定されます。 3価クロム (Cr^{G+}) を含めた全クロムを測定する場合は、 $\lceil Cr^{T-}$ 全クロム」の項目をご参照ください。
- 2. 発色時の最適 pH は2以下です。pH9以上の検水は希硫酸等で中性以下にしてください。 特に生コンクリート業などの廃液など pH が高い場合にはご注意ください。
- 3. 検水の温度は15~30℃で測定してください。

共存物質の影響

内蔵の検量線は、標準液を用いて作成しています。他の物質の影響が考えられる場合は、公定法と比較するか、標準液添加法により測定値を確認してください。

右表は、標準液に単一の物質を添加した場合の測定値への影響データです。

海水は影響しません。

還元性物質が検水中に共存すると、6 価クロムが3 価クロムに還元されます。 このような場合には全クロムとして測定してください。

1000mg/L以下は影響しない …Ba²⁺、Ca²⁺、Cl⁻、CN⁻、Co²⁺、I⁻、K⁺、Mg²⁺、Mn²⁺、Na⁺、NH₄⁺、Ni²⁺、NO₃⁻、PO₄³⁻、SO₄²⁻、 Zn²⁺、フェノール …Al³⁺、F⁻ …B³⁺(ほう酸) 500mg/L 250mg/L // 25mg/L // ...NO2 10mg/L ···Ag …Cu²⁺、Mo⁶⁺ (モリブデン酸) …Fe³⁺ 5mg/L 2mg/L 1mg/L …残留塩素 ···V⁵⁺ (バナジン酸) 少しでも影響する

試薬に関するお知らせ

パックテストに付属の使用法をご参照ください。 測定液は pH2以下です。